AD-A273 3
Naval Research Laboratory l’llllllﬂllﬂlﬂﬂllltllllm}llmlﬂ!'ﬂl:

Washington, DC 20375-5320

NRL/FR/5546--93-9581

An International Survey of Industrial
Applications of Formal Methods

Volume 1—Purpose, Approach, Analysis, and Conclusions

Dan H. CraIiGeN

ORA Canada

SusaN L. GERHART

Applied Formal Methods
e S i
THEODORE J. RALSTON ,‘2 5 4 a
L AL
Ralston Research Associates R SR
Lo iond o kT
_ f
September 30, 1993 _ 9528

\ﬂl\\\“\l\\\\\I\\\\I\I\l\l\\\\\\l\\\\\\\“\

93 19 8 0T2

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE B 0168

Mcmiwd-nhﬁ- Hection of inf: ion ie esti d te age 1 howr par renyonee, including the time for C e g date seurces,
gathering and g the dete d, end \pleting and ing the collecti dwuums-aemmmmwwmumm?“:dm
colisstion of Information, Inchuding suggestions for reducing this burden, to Washington Headquarters Services, t ati and Reparts, 12185 Jetferson
Devie Highway. Sute 1304, Arkrgton: VA 222024302, and 16 the Office of Management and Budget. P.::wut Reduction Project 10704-0188), Washington, OC 20503.
1. AGENCY USE ONLY (Lesve Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Scptember 30, 1993 Final Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An International Survey of Industrial Applications of Formal Methods PE - 63794N

Volume 1—Purpose, Approach, Analysis, and Conclusions
6. AUTHOR(S)

Dan H. Craigen,* Susan L. Gerhart,t and Theodore J. Ralstont
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Naval Research Laboratory

Washington, DC 20375-5320 NRL/FR/5546-93-9581
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES} 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

Office of Naval Research

Code 01111

Arlington, VA 22202

11. SUPPLEMENTARY NOTES

*ORA Canada, Ottawa, Ontario
tApplied Formal Methods, Austin, Texas
1Ralston Research Associates, Tacoma, Washington

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Formal methods are mathematically based techniques, often supported by reasoning tools, that can offer a rigorous and
cffective way to model, design, and analyze computer systems. The purpose of this study is to evaluate international industrial
cxperience in using formal methods. The cases selected are, we believe, representative of industrial-grade projects and span a
variety of application domains. The study had three main objectives:

® to better inform deliberations within industry and government on standards and regulations;
¢ to provide an authoritative record on the practical experience of formal methods to date; and
® to suggest arcas where future research and technology development are needed.

This is the first volume of a two-volume final report on an international survey of industrial applications of formal methods.
This volume describes the study, the formal methods, the cases that were studied, our approach to performing the study, and our
analysis, findings, and conclusions. Volume 2 details the 12 case studies.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Formal methods Reasoning tools System design 106
Computer systems Formal specification Design verification 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standerd Form 298 (Rev. 2-88)

Prescribed by ANS! Std 229-18
1 298-102

CONTENTS

EXECUTIVE SUMMARY e i i E-1
L. INTRODUCTION it e e e e e et e e e e e e e e 1
2. FORMAL METHODS ettt e et e ettt e i eieaa 1
2.1 A Historical Perspective ittt 2
2.2 What are Formal Methods? 3
2.3 What are the Limits of Formal Methods? 4
2.4 SpecificFormal Methods e 4
3. CASE SUMMARYt i e e e e e 5
3.1 Regulatory Cluster ittt e e e e e 6
3.2 Commercial Cluster ittt ittt ittt e 8
3.3 Exploratory Cluster i e e 9
4. METHODOLOGY ...ttt e e e e e e et e e e e 9
4.1 Areasof Interesto i it e e e e 10
4.2 Acquisitionof Information L 11
4.3 Questionnaires e e 11
4.4 Analytic Framework e 12
45 Cluster Analysis e 14
5. REGULATORY CLUSTER ittt it i e i 14
5.1 Introductionttt e e e e 14
T T 16
5.3 ObSeIVationS e e e e 16
5.4 Analysis e e e 17
6. COMMERCIAL CLUSTER e e e e e 21
6.1 Introduction i e e e 21
6.2 CaSBSt e e e e e e 22
6.3 ObServationsttt e e e 22
6.4 Analysis e e 23
7. EXPLORATORY CLUSTER it i e e e 27
7.1 Introduction e e 27
8 2 T 27
7.3 Observations et e e e e e e e e e e e 27
7.4 Analysis e 28

iii

8 KEYEVENTSANDTIMINGttt 32

8.1 Starter e e e 34
8.2 BOOSIEr e e e e 35
8.3 Current State e e e 35
84 Timing i e e 36
9. ANALYSIS OF FORMAL METHODS R&D SUMMARY 36
9.1 Regulatory Cluster i it e e 36
9.2 Commercial Clusterttt 42
9.3 Overall Observations iuiitmimunneneeneaaenenn. 46
10. FINDINGS, OBSERVATIONS, AND CONCLUSIONS 48
10.1 Maturing of Formal Methods 48
10.2 Scale of Application e e 49
10.3 Primary Uses of Formal Methods 50
10.4 System Certification L 51
10.5 Tool Support e e e 51
10.6 Technology Transfer 52
10.7 Formal Methods SkillsareBuilding 53
10.8 Code Level Application of Formal Methods 53
10.9 Inadequate Cost Modelsttt innennnnnn 54
REFERENCES e e e e e e e 54
APPENDIX A—BIOGRAPHIES OF AUTHORS 59
Al DanCraigen e e 59
A2. SusanL.Gerhart e 59
A3, TheodoreJ. Ralston ittt i 60
APPENDIX B—FORMAL METHODS TECHNIQUES 61
B1. Software Cost Reduction (SCR) 61
B, B o e e e e e e e e 62
B3. Cleanroom it e e e e e 65
B4. Formal Development Methodology (FDM) 66
B5. Gypsy Verification Environment 68
B6. Hoare Logict e e 70
B7. Hewlett-Packard Specification Language (HP-SL) 73
B8. Occam/Communicating Sequential Processes (CSP) 75
BY. RAISE e 78
B10. TCAS Methodologyottt et 80
Bl Z e e e e e e 82
APPENDIX C—INITIAL QUESTIONNAIRE 89
Cl. Approach e e e 89

iv

APPENDIX D—QUESTIONNAIRE FOR STRUCTURED INTERVIEW 91
D.1 Organizational Context it ennennnnnn.. 91
D.2 Project Contentand History00t iiinneennn.. 91
D.3 Application Goals 91
D.4 Formal Methods Factors nnnnnn.. 92
D.5 Formal Methodsand Tools Usage 92
D.6 Formal Methods Tools Usage Questions 92
D7 Results e 93

APPENDIX E—REVIEW COMMITTEE ittt iin e 95

APPENDIX F—ACKNOWLEDGMENTS ittty 97

Accesion For

NTIS CRAI g
DTIC TAB
Unannounced 0
Justification

Ditiz oo

Iy ‘ EEEIEE H ~ -~
LA [GTOROL S

S

Dist

I L
AVEL oL o)

Tpedidl

Al |

DTIC QUALITY INSPECTED 3

EXECUTIVE SUMMARY

INTRODUCTION

Formal methods are mathematically based techniques, often supported by reasoning tools, that can
offer a rigorous and effective way to model, design, and analyze computer systems. This report
summarizes the results of an independent study of 12 cases in which formal methods were applied to the
construction of industrial systems. A major conclusion of the study is that formal methods, while still
immature in certain important respects, are beginning to be used seriously and successfully by industry
to design and develop computer or computerized systems.

Canada’s Atomic Energy Control Board (AECB), the U.S. National Institute of Science and
Technology (NIST), and the U.S. Naval Research Laboratory (NRL) commissioned this study to
determine the industrial track record of formal methods to date and to assess the efficacy of formal
methods for meeting their needs. The study had three main objectives:

¢ to better inform deliberations within industry and government on standards and regulations;
¢ to provide an authoritative record on the practical experience of formal methods to date; and
® to suggest areas where further research and technology development are needed.

These objectives have been accomplished through the publication of this study. The study consists
of two volumes and this Executive Summary. The first volume is the analysis of the supporting data
contained in the second volume. Volume 1 includes a discussion on formal methods and a brief
characterization of the formal and related methods used in the cases, a summary of the 12 cases, a
description of the methodology used in the survey, a cluster-by-cluster analysis of the data, a discussion
on the key events and timing associated with each case, an analysis of our formal methods R&D
summary, and concludes with the findings, observations, and conclusions. The appendixes to Volume 1
contain brief biographies of the authors, brief characterizations of 11 formal methods used in the cases,
the initial questionnaire, the questionnaire used in our structured interviews, and acknowledgments.
Volume 2 contains detailed supporting data on the 12 cases.

Through these means, the sponsors have been provided with an organized body of systematic
information, assessments, evaluations and observations that interpret and extrapolate useful data on cases
of significant industrial scale and applicability to real-world products.

This Executive Summary presents:

¢ a summary of the major findings of the study.

¢ recommendations for continuing R&D in formal methods.

FINDINGS AND RECOMMENDATIONS

The following conclusions are the result of applying the expertise of the authors in analyzing the
cases.

E-1

Formal methods are maturing, slowly but steadily. Ten years ago, formal methods were
perceived as mainly proof-of-correctness techniques for program verification that were suitable
only for use on toy problems. Today, we see two major differences. First, the general concept
of formal methods embraces a wider perspective than proof-of-correctness to include formal
specification, formal system design, formal design verification, and other steps in system
engineering connoting the use of mathematical description and analysis of computer-controlied
systems. Second, organizations responsible for a wide range of applications have found it
necessary to reach out for some improved means of intellectual control over their complex
system developments and have found ways that formal specification, design, and verification can
be applied, along with many other techniques, to meet their needs.

Formal methods are being applied now to develop systems of significant scale and importance.
The 12 cases studied were selected as representative of some 60 projects (completed and
on-going) using formal methods on significant real-world systems. While a majority of these
cases are European, there is an increasing number of North American examples. The 12 projects
involve applications with highly complex requirements and multipage specifications, which cut
across a number of modern application domains such as transaction processing, safety-critical
control systems, embedded hardware, security, and VLSI design.

The primary uses of formal methods, as shown in the case studies, are re-engineering existing
systems; stabilizing system requirements through precise descriptions and analyses;
communication among various levels of system stakeholders (e.g., design team, QA, managers);
and as evidence of "best practice” (in a regulatory and standards context).

Regulators are working with researchers and developers to develop practical and effective
techniques for future system certification. Efforts such as the NIST FIPSPUB on high assurance
software, DO178B, IEEE 1228, and the draft IEC/ISO regulations on product safety and
software safety, to name a few, are emerging with requirements for improved design and
development practices.

Tool support, while necessary for the full industrialization process, has been found neither
necessary nor sufficient for the successful application of formal methods to date. Some of the
12 cases used tools and some did not. In general, the lack of tools did not impede the choice to
use formal methods, since tools were developed or adapted as needed, but neither did the
presence of a tool or tools stimulate the choice to use a particular method (except in the one case
in which the use of a formal method was mandated).

Several North American organizations and many more European ones have formal methods
technology transfer efforts in progress. Even those organizations which have seen successful
applications show only a small degree of penetration in their projects on the whole and in degree
of use within their software development processes.

Skills are building slowly within organizations that are attempting experimental formal methods
use on industrial projects. The current educational base in the U.S. is weak in teaching formal
methods in the context of software engineering.

Formal methods have been applied in a few instances at the code level of system development.
However, most programming languages lack adequate semantic base¢s to support the full
application of formal methods (as do many specification languages). Static analysis and
compiler-type tools that have gained confidence may be employed to complement design

E-2

o

refinements carried close to a code level. However, many aspects of run-time environments and
hardware, e.g., real-time and other performance aspects, remain to be treated adequately and
must be viewed as holes in the general use of formal methods.

9. There are no generally accepted cost models to drive gathering data from current projects or
predicting the paths of future projects. Some organizations, however, do have process
descriptions and intuitive cost models in which they have sufficient confidence. It has been
difficulr to establish the value of formal methods in situations where already high quality can be
otherwise achieved or where minimizuig time-to-market dominates the product goals.

RECOMMENDATIONS ON R&D

From the authors’ analysis of the 12 cases and the stated R&D needs from those we interviewed, the
following areas are suggested for future R&D. Note that listing these areas is not meant to exclude other
potentially fruitful research directions; these areas are drawn from the particular set of cases that we
studied.

1. There is a clear need for improved integration of formal methods techniques with other software
engineering practices.

2. While numerous formal methods-related tools exist, industry needs ruggedized versions; not
research prototypes. These tools need to be an integral part of a broader software development
tool suite.

3. Added emphasis . developing notations more suitable to use by individuals not expert in formal
methods or matnematical logic is required.

4. Formal methods need to evolve with other computing science trends, such as visualization,
multimedia, object-oriented programming, and CASE.

5. At least for those cases requiring regulatory approval, improved automated deduction support
is required.

6. Expansion of formal methods capabilities to include real-time, concurrency, and asynchronous
processes is needed.

7. Efforts at easing the transition of a complex technology, such as formal methods, to a broader
user base is needed.

E-3

AN INTERNATIONAL SURVEY OF INDUSTRIAL APPLICATIONS
OF FORMAL METHODS

VOLUME 1
PURPOSE, APPROACH, ANALYSIS, AND CONCLUSIONS

1. INTRODUCTION

Formal methods are mathematically based techniques, often supported by reasoning tools, that can
offer a rigorous and effective way to model, design, and analyze computer systems. The purpose of this
study is to evaluate international industrial experience in using formal methods. The cases se'ected are,
we believe, representative of industrial-grade projects and span a variety of application domains. The
study had three main objectives:

e to better inform deliberations within industry and government on standards and regulations;
¢ to provide an authoritative record on the practical experience of formal methods to date; and
¢ to suggest areas where future research and technology development are needed.

This study was undertaken by three experts in formal methods and software engineering: Dan
Craigen of ORA Canada, Susan Gerhart of Applied Formal Methods, and Ted Ralston of Ralston
Research Associates. Robin Bloomfield of Adelard was involved with the Darlington Nuclear Generating
Station Shutdown System case. Brief biographies of the authors are included in Appendix A.

Support for this study was provided by organizations in Canada and the United States. The Atomic
Energy Control Board of Canada (AECB) provided support for Dan Craigen and for the technical editing
provided by Karen Summerskill. The U.S. Naval Research Laboratory (NRL), Washington, D.C.,
provided suppocrt for all three authors. The U.S. National Institute of Standards and Technology (NIST)
provided support for Ted Ralston.

This final report consists of two volumes. This first volume describes the study, formal methods, the
cases that were studied, our approach to performing the study, and our analysis, findings, and
conclusions.

The second volume of the final report provides the details on the case studies. For each of the case
studies, we present a case description, summarize the information obtained (from interviews and the
literature), provide an evaluation of the case, highlight R&D issues pertaining to formal methods, and
provide some conclusions. Earlier drafts of the case studies were reviewed by the relevant participants.

2. FORMAL METHODS

Before proceeding, we provide a historical perspective, explain the term “formal methods,” and
introduce the broad spectrum of formal methods techniques that are represented in the survey.

Manuscript approved April 14, 1993.

2 Craigen, Gerhart, and Ralston

2.1 A Historical Perspective

For over two decades, researchers have explored topics in the mathematics of program synthesis and
analysis. The article **Assigning Meaning to Programs’’ [Flo68] stated the goal of formalizing both
semantics of programming languages, and specification and reasoning about individual programs.
Attempting to achieve the goal led to the key idea of inductive assertions. Inductive assertions evolved
into the use of relationships among preconditions, program statements, and postconditions for defining
both language semantics and program meaning. The intriguing possibility of mechanical proof of
programs, or alternatively, heuristic generation of programs, yielded many exploratory systems and
theoretical insights. Two barriers to practical application arose: (1) it was difficult to capture the full
semantic content of programming languages and operating environments; and (2) it was a ccnstant
challenge to express the functional and nonfunctional intent for a program in its context of use.

Research lead to development of many important concepts: formal definitions of complex language
features and identification of pitfalls of unnecessary and overly complex features; specification languages
for abstract data types, concurrent processes, and abstract machines; a theory of abstraction behind
hierarchical system structures; mechanizable logics that permitted computational reasoning about program
properties; and theories of domains such as sccurity, synchronous clocks, microprocessors, and
compiling. Practical applications were found in these domains and small-to-medium scale examples were
worked out. Industrialization began in the U.S. about a decade ago through the government mandate of
certification of security properties.

Practice went a different route. Verification was achieved (and defined) through case-based reasoning
(i.e., testing) with numerous criteria and strategies for good testing practice (primarily functional and
structural coverage). Reviews provided the primary means of intellectual control: mental checking of
desirable properties of systems under development and the concomitant communication among
stakeholders (managers, designers, testers, documenters, etc.). Heuristic methodologies for structured
requirements analysis and design, which captured the conventional wisdom of good structure and provided
a common means of communication, offered additional guidance toward systems.

Researchers developed a theoretical base for testing, and the results, although mostly negative,
suggested various heuristics for testing that more closely approximated an ideal where each test case stood
some chance of revealing errors or demonstrating new evidence of correctness. Heuristic methodologies
from practice never gained much research attention although abstract data types gave rise to
object-oriented languages and methods to add even more structure and support to heuristic system
development. Theoretical results have also played a role in system development (e.g., data compression,
error correction, and encryption algorithms for disk and network storage and data structures permit
representation and searching of databases and processing of visual images). Especially demanding are
theories and strategies for managing distributed computation and data on both physically distributed
resources and multiprocessor computing systems.

No matter what technical approach is applied in software development, common information
processing needs arise: maintaining consistency among, and intelligibility of, an interwoven mass of
documents expressing the points of view of many stakeholders, with constant change in content and often
change in structure of that mass, while the set of stakeholders also changes over what may be many years
of a system’s life. Programming environments have evolved to address this need: structured editors,
configuration management, database representations, graphical interfaces, and ways of coordinating work
flow among, as well as work products of, groups of system stakeholders. Particularly important are those
assets that are viewed as worthy of use beyond their project context (e.g., software components,
document templates, review guidebooks, error and productivity data).

Insernational Survey of Industrial Applications 3

Yet another thread in practice has been the greater attention forced onto the process aspects of system
development: how an organization manages and improves its infrastructure and specific procedures. While
the logic-based form of mathematical approaches to system description was maturing, so was another
form: statistical reasoning about errors .<d growth of reliability over time, with the objective of
introducing industrial quality control .. . assurance practices.

Thus we have the setting for this study and the present report: mathematical techniques have been
maturing for 25 years while nonmathematical techniques and general concerns for process have driven
the practice. In the past five years, sparse anecdotal evidence indicated that formal methods were
beginning to be used in industrial practice, leading to sponsorship of the present study to determine
systematically w..d factually where these applications were occurring, why, and how the methods were
being used, and with what success.

2.2 What are Formal Methods?

Definitions of formal methods abound. In Craigen and Summerskill [FM89], formal methods are
defined as:

“Methods that add mathematical rigor to the development, analysis, and operation cf computer
systems and to applications based thereupon.”

“...are nothing but the application of applied mathematics—in this case, formal logic—to the design
and analysis of software-intensive systems.”

In more concrete terms, there has been a tendency on the part of the formal methods community to
define formal methods in terms of a Hilbert-style axiomatization. For example, Robin Bloomfield [Bl092]
has defined formal methods as follows:

“A software specification and production method, based on a mathematical system, that comprises:

® A collection of mathematical notations addressing the specification, design, and development
phases of software production,

¢ A well-foundeA logical inference system in which formal verification proofs and proofs of other
properties can be formulated, and

® A methodological framework within which software can be developed from the specification in
a formally verifiable manner.”

For the purposes of this report, we define formal methods as:

the application of mathematical synthesis and analysis techniques to the development of computer-
controlled systems.

In our view, the overriding reason for developing formal methods techniques is to erect a framework
within which we can predict, in a scientific manner, the behavior of computer-controlled systems. While
the techniques that underlie the cases that we have surveyed are stepping stones toward achieving such
a scientific and engineering discipline, substantial work remains to be performed. The processes for
developing computer-controlled systems are still evolving.

4 Craigen, Gerhart, and Ralston

The reader should be aware that the terms “formal methods™ and “program verification™ are not
synonyms. In our view, program verification is a part of formal methods where programs are proven to
be consistent with their specifications. The style of such proofs is described by Gries [Gri81], Hoare
(Hoa69) and Dijkstra [Dij76]; and supported in veriiication systems such as the Gypsy Verification
Environment [GVE90]. We defer to Section 2.4 a more in-depth discussion of the formal methods
techniques being used in our surveyed applications.

An NRL report [CGJ91] includes a glossary of terms that are often found in the literature on formal
methods. While we have not explicitly attempted to conform to the definitions of terminology in that
report, our usage does not vary substantially.

2.3 What are the Limits of Formal Methods?

As with any technology, there are limits to the applicability of formal methods. In addition to the
practical limits arising from the current state of the technology, there are also theoretical limits.
Understanding both kinds of limits is particularly important when formal methods are used in the
development of critical systems.

We will defer to the conclusions any discussion of the practical limits of formal methods. Through
the analysis of the cases, we studied how formal methods are being currently applied and may be
developed. For example, it appears that the application of formal methods to real-time characteristics of
systems is still premature. (Craigen and Summerskill [FM89] discuss theoretical and practical limits in
some detail.)

The question of theoretical limits of formal methods has two aspects [FM89]:

¢ What are the boundaries between the real and mathematical worlds?
¢ What are the internal limits of mathematics?

To the first question, the boundary is the same as that ¢f any applied mathematical domain: we can
model physical processes, but we can never be sure that our model describes the actual workings of the
physical processes. In addition, results in quantum mechanics guarantee that we are limited in what we
are able to predict about the Universe. When we consider information (as opposed to physical) systems,
we enter the realm of interpretation where more, or less, meaning may be conveyed than intended, the
wrong meaning might be conveyed, or the wrong recipients might be involved. Often the requirements
for such a system are influenced by human (rather than natural) laws, such as tax codes, risk factors,
insurance policies, and professional standards.

Furthermore, with formal methods we must formally codify a client’s requirements. This jump from
the informal perspective of the client to a mathematical model can never be formally proven.

Since the early part of this century, there has been an increasing body of literature that has
demonstrated limitations to our use of mathematics. Particular examples are the undecidability results
(such as the halting problem).

2.4 Specific Formal Methods

The cases we investigated used a broad collection of formal methods. In Appendix B, we present
summaries of the principal formal methods that are mentioned in the report. Raferences for the various
methods are included and our readers are directed to those references for in-depth presentations of the

International Survey of Industrial Applications 5

methods. Volume 2 of the Vienna Development Methodology symposium proceedings [VDM91] aiso
includes tutorial presentations of a number of formal methods.

In Fig. 1, we associate the methods with the cases in which they have been used. The cases are
summarized in Section 3.

- Software Cost Reduction (SCR): Darlington Nuclear Generating Staticn (DNGS)
- B: SACEM

- Cleanroom Software Methodology: COBOL Structuring Facility (COBOL/SF)

- Formal Development Methodology (FDM): Token-Based Access Control System (TBACS)
- Gypsy Verification Environment (GVE): Multinet Gateway System (MGS)

- Hoare Logic: SACEM

- Occam and Communicating Sequential Processes (CSP): INMOS Transputer

- RAISE: Large Correct Systems (LaCoS)

- Hewlett-Packard Specification Language

- TCAS Methodology: Traffic Alert and Collision Avoidance System

- Z: SSADM Toolset, Tektronix oscilloscopes, INMOS Transputer

Fig. 1 — Formal methods used in surveyed cases

In Appendix B, our summaries of the methods are divided into two parts: we discuss how the method
works, and present some observations. We have organized our discussion on how the method works by
identifying the

¢ representations used: What are the underlying notations?

o steps performed: How are the representations used?

¢ tools applied: What tools are generally used?

¢ roles involved: Who does what and what skill do they have?

¢ artifacts produced: What are the major products that are documented?

For our observations, we

® describe what the method achieves,

¢ describe limitations of the method,

identify other techniques that are supported or required, and
identify the user community.

3. CASE SUMMARY

Twelve projects were chosen as the object of our study. These projects can be divided into thrce
clusters: regulatory, commercial, and exploratory. Regulatory cases exhibit safety- or security-critical
attributes and, thereby, attract the attention of the standards communities and agencies, and the regulators
who will license the product for use. Commercial cases are those cases that involve purely profit
concerns. Finally, the exploratory cases are those cases where the organizations involved were
investigating the potential utility of formal methods in their own settings.

6 Craigen, Gerhart, and Ralston

The cases are international, involving organizations in Canada, the United Kingdom, the United
States, and continental Europe. Available resources did not permit the inclusion of cases from Asia or
Australia.

We believe that the cases collectively uncover many factors relevant to evaluating the efficacy, utility,
and applicability of formal methods. The cases also demonstrate different uses of formal methods. Among
these are

“modelization,” where formal languages (e.g., Z) are used to model systems,
demonstrating conformance of code with specifications,

demonstrating conformance o design with requirements, and

the application of mathematical reasoning to solve difficult conceptual problems.

Finally, we believe that the cases encompass many of the anecdotal claims, both pro and con,
regarding formal methods.

We summarize the 12 cases in the remainder of this section. The cases are introduced in the context
of the clusters. Our analysis of the collection of cases will be based on these clusters. Throughout the
report we will use abbreviations to identify the cases; these abbreviations are introduced with the name
of the case. Figure 2 presents an idea of the size of the applications involved. Of course, “lines of code”
(LOC) is a rather superficial measure and must be viewed with caution.

3.1 Regulatory Cluster
3.1.1 Darlington: Trip Computer Software (DNGS)

Ontario Hydro and Atomic Energy of Canada Limited (AECL) developed computer-controlled
shutdown systems for the Darlington Nuclear Generating Station (DNGS). When difficulties arose in
obtaining an operating license from the Atomic Energy Control Board of Canada (AECB), the Canadian
regulator for nuclear generating stations, formal methods were applied to assure AECB that the software
met requirements. The process was one of post-development mathematical analysis of requirements and
code using Software Cost Reduction.

The specifications, code, and proofs require 25 three-inch binders for each of the two shutdown
systems. While there is some discrepancy in the various papers on the amount of code for the two
shutdown systems, the definitive word was that one of the shutdown systems (SDS1) has about 2500 lines
of code.

The use of the Software Cost Reduction approach finally convinced the AECB that the shutdown
system was no longer a licensing impediment.

3.1.2 Multinet Gateway System (MGS)

The Multinet Gateway System is an Internet device that provides a protocol-based datagram service
for the secure delivery of datagrams between source and destination hosts. This case is our main
computer-security application. (TBACS, one of the exploratory cases, also involved computer-security
considerations.) MGS went through a significant portion of the U.S. Trusted Computer System Evaluation
Criteria process [NCSCB85] and achieved a “developmental evaluation.” The process included TEMPEST
and communications security analysis. Rigorous mathematics and the Gypsy Verification Environment
were used to develop and model security functionality.

International Survey of Industrial Applications 7

Regulatory

DNGS (SDS1) 1362 LOC Fortran; 1185 LOC Assembler

MGS 10 pgs math; 80 pgs Gypsy; 6 KLOC OS

SACEM 9 KLOC verified code; total of 315,000 person hours

TCAS 7 KLOC of pseudocode; specs about the same size

Commercial

SSADM 350 pgs Z/English; 550 schemas; 37 KLOC Objective C

CICS 268 KLOC new/modified code; 50 KLOC traced to Z specs

Cleanroom (COBOL/SF) 80 KLOC; (20 KLOC reused; 18 KLOC changed; 34 KLOC new)
Tektronix 200 KLOC; 2 x 15 pgs of Z specs

INMOS Floating Point Unit: 100 pgs Z; 4 KLOC Occam; Virtual Channel Processor about 10° states
Exploratory

LaCoS No scale reported

TBACS 300 lines of FDM; 2500 lines of C

HP 55 pgs HP-SL; 1290 lines of spec and design; 4390 LOC

Fig. 2 — Scale of applications

From the formal methods perspective, 10 pages were needed to describe the security model and a
further 80 pages for presenting the Gypsy specification of the MGS. The underlying operating system has
about 6,000 lines of code.

3.1.3 SACEM

The product developed is a certified safety-critical railway signalling system which reduced train
separation from 2 minutes 30 seconds to 2 minutes, while maintaining safety requirements. The successful
deployment of the signalling system removed the need to build a new third railway line. The developers
of the signalling system were required to convince the RATP (the Paris rapid transit authority) that the
system met safety requirements. Among the numerous techniques used to demonstrate system safety (e.g.,
fault analysis and simulation) were B and Hoare Logic.

The system consists of 9,000 lines of verified code and 120,000 hours of formal methods effort. The
new system allows for 60,000 passengers to be carried per hour.

3.1.4 Traffic Alert and Collision Avoidarce System (TCAS)

The purpose of the TCAS family of instruments is to reduce the risk of midair and near midair
collisions between aircraft. TCAS functions separately from the ground-based air traffic control system.
The U.S. Federal Aviation Administration has required, under Congressional mandate, that TCAS 1l be
installed on all aircraft by December 31, 1993. The TCAS methodology was developed and used to
formally describe two components of TCAS: the Collision Avoidance System (CAS) Logic and the
surveillance system.

There were 7,000 lines of pseudocode to describe the CAS Logic; the formal description is of
comparable size. Work on the surveillance system is in progress.

8 Craigen, Gerhart, and Ralston

3.2 Commercial Cluster
3.2.1 Structured Systems Analysis and Design Method (SSADM) Toolset

The British firm Praxis developed this computer-assisted systems engineering toolset to support the
use of the CCTA standard development method. Z was used to develop a 350-page formal specification
of the toolset infrastructure, from which was developed 37,000 lines of Objective C code.

3.2.2 Customer Information Control System (CICS)

The Customer Information Control System is a large transaction processing system developed by
IBM. A major portion of a recent release was re-engineered using the Z method and tools at IBM
Hursley, U.K. CICS is approximately 800,000 lines of source code; of the approximately 50,000 lines
of new or modified code, 37,000 were completely specified using Z and about 11,000 were partially
specified using Z. IBM claims that the use of Z has resulted in reductions in both development cost and
error rates.

3.2.3 Cleanroom Software Methodology

To better understand the Cleanroom methodology, we investigated two industrial applications: one
at NASA Goddard and the second at the Federal Systems Division of IBM. The Goddard application
focused on the attitude ground support for NASA’s International Solar Terrestrial Physics Satellite. The
second application, and the prime object of our study of Cleanroom, was the development of a COBOL
Structuring Facility (COBOL/SF), which converted old COBOL programs to a semantically equivalent
“structured programming” form. The COBOL/SF resulted in a product of 80,000 lines of code and which
required 70 person-months of effort. The product was important for demonstrating to IBM management
the potential of the Cleanroom methodology.

3.2.4 Software Architecture for Oscilloscopes Using Z (Tektronix)

Tektronix in Beaverton, Oregon, used Z to develop a reusable software architecture to be shared
among a number of new oscilloscope products. Z was used as a mathematical modelling language to
explore design ideas. The models were viewed as being “nonexecutable prototypes.” The software
architecture consists of 200 KLOC and 30 pages of Z.

3.2.5 INMOS Transputers (INMOS)

In 1985, a small group of designers at INMOS Ltd. in Bristol, England, began exploring the use of
formal program specification, transformation, and proof techniques in designing microprocessors. INMOS
manufactures advanced microprocessors, and their best known product is the Transputer family of 32-bit
Very Large Scale Integration (VLSI) circuits with a unique architecture designed for concurrent
multiprocessor applications (processor, memory, and communication channels are self-contained on each
Transputer chip).

This case consists of three interrelated projects, all of which use formal methods in some aspect of
the design or development of components of three generations of the INMOS Trarsputer:

1. The “floating point” project: the use of Z to specify tne IEEE Floating Point Standard which
was applied to two successive generations of Transputer (a software implementation, and a
hardware implementation).

International Survey of Industrial Applications 9

2. The use of Z and Occam to design a scheduler for the T-800 Transputer.

3. The use of Communicating Sequential Processes and Calculus of Communicating Systems plus
a “refinement checker” in the design and verification of a new feature of the T9000 Transputer,
the Virtual Channel Processor.

3.3 Exploratory Cluster
3.3.1 Large Correct Systems (LaCoS)

The Rigorous Approach to Industrial Software Engineering (RAISE) is a large language and toolset
evolved from the Vienna Development Methodology (VDM). Following the funding of RAISE during
an ESPRIT I (1985-1990) project and the commitment of commercialization by Computer Resources
International (in Denmark), an ESPRIT II (1990-1994) project was formed with the dual purpose of (1)
improving the industrial potential of RAISE and (2) transferring formal methods into various LaCoS
partners. This survey interviewed one partner at some length with a brief interview with a second partner
(there are a total of six “consumer” partners in addition to Computer Resources International, the
“producer”). The first, Lloyd’s Register, is evaluating RAISE (as well as other methods) on a data
acquisition and equipment management system for ship engines. The second, Matra Transport, builds
railway and other systems (like GEC Alsthom on SACEM) and has primarily been exploring methodology
so far. Both partners are building up consultancy in formal methods and assessment. Since LaCoS is an
ongoing technology transfer project on a large scale, this case will be important to follow for the
remaining three years and beyond.

3.3.2 Token-based Access Control System (TBACS)

The National Institute for Standards and Technology (NIST) is the U.S. measurement and testing
laboratory, with numerous ongoing projects underlying standards. In this case, one group in Computer
Security Technology has been developing a series of prototype smartcards for cryptographic authentication
for network access. Another group in Software Engineering is chartered to look at new technology in
support of open systems and other commercial standards. In this case, a staff member from the Software
Engineering group was interested in experimenting with formal methods and located the smartcard
application as a basis. A toolset and approach was chosen that followed the standard process in Trusted
System certification, using a theorem prover to verify that a design met requirements of a security policy
model. In particular, TBACS is a smartcard access control system with cryptographic authentication.

3.3.3 Hewleit-Packard Medical Instruments

This case was of a significant scale and importance of product but it is considered exploratory in that
the primary objective was technology transfer. The product is a real-time database (called the Analytical
Information Base) of patient monitoring information. Using an HP-developed specification language (a
variant of VDM), a specification was produced by a formal methods transfer group and a developer. The
transfer effort failed because time-to-market was the key feature and formal methods offered little beyond
the high quality already achievable by other means that were consistent with the culture of the
organization.

4. METHODOLOGY

In the introduction, we stated that the purpose of this study of formal methods is to better inform
industry and government, to provide an authoritativ- record, and to provide pointers to future needs. In
this section, we discuss our criteria and priorities for information collection. We also discuss the process
we used for acquiring information on the cases and our analysis approach.

10 Craigen, Gerhart, and Ralston

As will be clear from the biographies of the authors (Appendix A), the members of the survey team
are experts in formal methods and, to differing extents, have vested interests in the technology.
Consequently, we must be concerned about potential bias in our analysis. One means of allaying this
concern, and allowing for input from individuals who have expertise supplementing that of the study
team, was to form a Review Committee (Appendix E). The Review Committee reviewed and commented
on interim and draft final reports, and we have responded to their comments by making changes to the
report.

The reader should note that our methodology was a “common sense” approach—as opposed to a
specific social scientific approach—driven by the need for both general context of how methods were used
and specific aspects of why formal methods were drawn and how they were used. In addition, many
variables affect the success or failure of the case studies; consequently, we are limited in the purely
scientific conclusions that can be reached.

4.1 Areas of Interest
As mirrored in the questionnaires (Section 4.3), we structured our areas of interest as follows:

a. Characterization of organizations. What were their motivations and how did the motivations
relate to the principal goals of the various organizations? We also compare and contrast staff
compositions of the organizations and project.

b. Description of project. How did the projects evolve and what levels of effort were associated with
the projects?

c. Description of project goals and motivations for use of formal methods (general) and choice of
formal method (particular). What forces were working on the project? What were the criteria
for selecting the chosen formal methods?

d. Description of the processes used in developing the application. One of our motivations is our
interest in the transition of formal methods into the organizations and the project. In general, how
do organizations transfer new technology into their development groups? What are the educational
requirements for the effective use of formal methods? How did the use of formal methods modify
existing processes and how did the project’s processes compare with general organizational
application development procssses?

e. Description of the effects (both beneficial and detrimental) of using formal methods. Specifically,
we were interested in the effects formal methods had on achieving project goals.

f. Description of the effects of tools. What was the utility of the chosen (formal methods) tools and
did the presence or absence of tools play a role in the choice of the formal method?

g. Description of the qualitative and quantitative results of the project. While interested in the
general achievements of the project, we were primarily interested in the conclusions reached from
using formal methods.

International Survey of Industrial Applications 11

4.2 Acquisition of Information
On a case-by-case basis, we proceeded generally as follows:

1. An initial questionnaire was sent to the participants to be interviewed. In the majority of cases,
the questionnaire was completed by and returned to the survey team prior to the interview. (The
content and structure of the questionnaires are discussed in Section 4.3.)

2. The survey team studied relevant literature on the project.

3. Two members of the survey team interviewed project participants. A second questionnaire was
used to structure the interviews. The members of the survey team shared the questioning and note
taking. While the questionnaire usually structured the interviews, and thereby aided comparison
across projects, unique attributes of projects led to some divergences in the interview process.

4. After the interview, the members of the survey team produced raw notes on the interview. These
notes, along with information gathered from the literature, were used to supplement the initial
and interview questionnaires. From the literature and interview notes, the study team wrote a
report on each case, using a reasonably consistent framework. In particular, we developed an
“analytic framework” (described below) for analyzing the cases. The reports were sent to project
participants for comment.

4.3 Questionnaires

Two questionnaires were used in the survey. The first questionnaire was sent to the individuals being
interviewed, and the completed questionnaire was often returned prior to our arrival at their site. The
initial questionnaire had two main roles: to have the individual being interviewed consider his or her
project in the light of our areas of interest; and to provide initial feedback to us on the project. The initial
questionnaire is included in Appendix C. This questionnaire evolved from our experiences interviewing
individuals at NIST (for TBACS) and at Carnegie-Mellon University (for Tektronix).

The second questionnaire includes questions of greater depth and was primarily meant to structure
our interviews. Thus, we attempted to maintain consistency, covering the same material throughout all
the interviews; we had reasonable success in achieving this consistency. The second questionnaire is
included in Appendix D.

Both questionnaires were divided into six categories, with the questionnaires intended to complement
each other. For example, the questions in the initial questionnaire are broader than the more technically
focused questions of the second questionnaire. The six categories are as follows:

Organizational context. Basic organizational information was requested. Besides understanding the
general composition of the organization, we attempted to compare and contrast the staff compositions of
the organization and project. (We were intentionally vague as to what “organization” means. We expected
our respondents to define what they felt was the environment that had the greatest impact on them.)

Project content and history. We obtained a description of the application, its evolution, and the
resources used. We also obtained information in support of the comparison between the organizational
and project compositions.

Application goals. We delved into the reasons why the application was developed and the major
influences that led to or affected the development.

12 Craigen, Gerhart, and Ralston

Formal methods factors. We were interested on the “why” and "what™ of selecting formal methods.

Formal methods and tool usage. Having selected to use formal methods, what were the processes and
tools that were used?

Results. Finally, we asked for general conclusions about the project and the impact of formal
methods.

4.4 Analytic Framework

Through this study we obtained substantial information. By developing an “analytic framework,” we
set a context for analyzing the information, presenting our interpretations, and highlighting patterns.

For each case, we produced vectors pertaining to important features of the product being developed
and to the process used in developing the product. Relative to the organization’s usual approach to
development (and this may be a subjective measurement), we characterized whether the use of formal
methods played a positive (+), neutral (0), or negative (-) role. In our view, the limited time available
for our study and the consequent level of detail being obtained from the cases did not permit a finer
granularity of analysis.

There were instances where no information on a product feature or process characteristic was
obtainable and, consequently, we were unable to submit any entry into the matrix. In such instances, we
used “n/a” to identify our inability to draw a conclusion. However, some of the n/a’s were a result of
particular product features or process characteristics not being of relevance to a particular development.
In the matrix we do not distinguish “not applicable” from “not available”.

The product features and process activities included as part of our vectors are described below. The
features and activities are not necessarily independent of each other. For example, client satisfaction will
depend upon the cost and quality of the product. Keep in mind that we are attempting to measure the
relative effect of using formal methods.

For each project, we provide an overview case description that includes the size of the effort, the
stages of development, and project references; provide a profile of the interviews and a survey of the
information obtained for the interviews and the references; and evaluate the case.

4.4.1 Background
Our background information includes the following:

Product:
What was developed? Who uses it?

Industrial Process:
What kind of development was performed? Briefly, what was the context?

Scale:
How large was the product development?
How extensive was the formal methods usage?

International Survey of Industrial Applications 13

Formal Methods Process:
How were formal methods used? What tools were applied?

Major Results:
What were the highlights of the process and product features?

Interview Profile:
How much effort was expended, and by whom? What parties were interviewed?

4.4.2 Product Features
We measured the following product features:

Client satisfaction
Were clients happier with the product? (Happiness is, of course, due to many aspects of the
product, including enhanced reliability and reduced cost.) Obtaining a baseline for satisfaction
comparison can be difficult.

Cost
Was the overall cost of the product reduced, or the profit increased?

Impact of product
What was the effect of the production of the product on the organization? For example, was the
product important to the company’s profit margin or an organization’s reputation?

Quality
Was the quality of the product improved? By “quality” we include concerns pertaining to safety
and security properties, enhanced functionality and performance, and reduction in errors.

Time-to-market
Was the product, or family of products, made available for marketing more rapidly (or, at least,
not further delayed)?

4.4.3 Process Effects
The process effects were divided into two parts: general and specific process effects.
General process effects:

Cost _
This measure of cost is based upon reduction in effort.

Impact of process
What effect did the process used to develop the product have on the organization? For example,
was the process important to the company’s profit margin or an organization’s reputation?

Pedagogical
As alearning opportunity, what did the organization make of the opportunity? Was there a steep
learning curve?

14 Craigen, Gerhart, and Ralston

Tools
Did the formal methods tools help or hinder the development of the product? Were the tools
reliable?

Specific process effects:

Design
Were the designs produced using formal methods fundamentally better or worse in some respect?
For example, were the designs simpler?

Reusable components
Did the use of formal methods ease the development and/or use of reusable hardware or software
components, designs, abstractions, etc.?

Maintainability
Is it easier to maintain the product? Maintenance includes incremental updates to the product and
fixing errors. Again, baseline data for comparison are difficult to obtain.

Requirements capture
Was the acquisition of requirements simplified?

Verification and Validation
What impact was there on the Verification and Validation aspects of the process? Observe that
Verification and Validation includes testing, proofs, and reviews.

4.4.4 Observations

In this part of our evaluation, we highlight certain points about the case that we feel should be
brought to the attention of the reader. We may, for example, include our opinions or information from
other sources.

4.4.5 Formal Methods R&D Summary

Finally, we provide feedback to the formal methods R&D community by describing the methods and
tools used on the project, and by providing recommendations based on the case.

4.5 Cluster Analysis

As described in Section 3, we divided the cases into three clusters: regulatory, commercial, and
exploratory. Defining these clusters allowed us to analyze subsets of the cases that were reasonably
comparable. For example, we found that there is increased concern for demonstrating that code is in
conformance with requirements in the regulatory cluster than with the other two clusters.

Imternational Survey of Industrial Applications 15

§. REGULATORY CLUSTER
§.1 Introduction

While recognizing the substantial benefits that have accrued to society from the application of
computer-based technology, there are risks involved with their introduction. Peter Neumann's Risks
forum! is replete with stories of computers failing to perform as expected by their developers. The two
failures that most caught public attention were the failure of the Therac-25 radiation therapy machine
(resulting in at least three deaths) and the failure of the AT&T long distance network in 1991.2 We will
call systems whose failure may result in substantial damage to society (e.g., death, financial loss, release
of toxic materials, unauthorized access to information) “critical systems.”

A number of regulatory and standards organizations in North America and Europe have been
investigating policy and technical approaches to achieving assurance for a range of critical systems.
Formal and other rigorous methods have figured importantly in their investigations of the means that
might be used or prescribed. Several standards, draft standards, regulations, and draft regulations
covering a range of critical systems and adopting various approaches from mandatory use of methods to
exhortatory provisions on “best practices” are currently circulating. These include the draft NIST Federal
Information Processing Standards and special publications on high assurance software and cryptographic
equipment, the Trusted Computer System Evaluation Criteria, IEC standards and draft standards, and the
U K. Ministry of Defence Interim Standard on Procurement of Safety Critical Systems (00-35, the draft
European Commission Directive on Product Safety). It seems clear that no one standard or approach will
satisfy the breadth of applications, and that a framework of integrated standards and/or regulations is
evolving. The U.K. SafelT Framework is one preliminary example.

The organizations charged with the responsibility for developing and applying these standards and
regulations are concerned, therefore, with a set of specific issues that can be captured by the following
questions:

1. What is the best policy approach to achieve assurance?
2. What should the project requirements be and how best can they be achieved reasonably?
3. How best to demonstrate conformance and to certify critical systems?

Therefore, with an eye to providing data and analysis of that data to help our sponsors (and industry)
answer these questions, we chose four cases involving actual development of critical systems using formal
methods.

It should be noted that regulators have different approaches to certification. We can distinguish at
least three approaches:

1. certification of the product (e.g., TCAS by the U.S. Federal Aviation Administration),
2. certification of the process (e.g., AECB), and
3. certification of professionals (as proposed in 00-55).

! Communications of the ACM carries a monthly article by Neumann entitled “Inside Risks,” which discusses
topics related to computer-based risks. Neumann is also the moderator of the Internet Risks Forum, which is
highlighted in Software Engineering Notes.

2 See [Lee91] for an account of numerous computing failures, including the two mentioned here.

16 Craigen, Gerhart, and Ralston

As described in introduction to Craigen and Summerskill [FM89], critical systems and formal
methods may be viewed as being related as follows:

1. Critical systems are increasingly being controlled by computer systems.
2. Existing techniques for developing, assuring, and certifying computer-based critical systems are
inadequate.
3. Formal methods have the potential for playing the same role in the development of computer-
based systems as applied mathematics does for other engineering disciplines.
4. Formal methods have had limited impact on the development of computer-based systems and
supporting technologies.

Interested readers should read the U.S. House of Representatives study [US89] for further discussions
on regulatory concerns.

§.2 Cases

As described in Section 3, four of our cases were motivated by regulatory concerns:

The Darlington Nuclear Generating Station (DNGS) Shutdown System - a safety-critical
application.

Multinet Gateway (MGS) - a security-critical Internet application.

SACEM - a safety-critical railway signalling system.
¢ TCAS - a safety-critical midair collision avoidance system.
Volume 2 discusses the applications in more detail.

5.3 Observations

The use of formal methods in the regulatory cases appears to be motivated primarily by concerns of
demonstrating high levels of assurance. While formal methods can be used proactively to develop better
systems, there is also the need to be able to demonstrate to regulatory authorities, unambiguously and
comprehensibly, the proposed effects of the systems (i.e., requirements) and to produce evidence (not
only through test plans, but by proof) that the code conforms with the requirements. There appears to
be a greater concern for proof in the regulatory cluster than with our other clusters. Hence, in the
regulatory ~luster, while modelization is clearly beneficial, there is the additional concern of definitively
demonstraung a relationship between the model and the underlying code.

There thus appears to be a greater need for automated deduction support for regulatory projects. Not
only is there a need for language processors, configuration management, tracing of requirements, etc.,
but there is a need for help with the proving process. Three of the cases had obvious needs for automated
deduction support.

In the DNGS case, the use of formal methods was not the result of a “grass roots” movement, but
was recommended by other organizations (AECB and their investigator, David. Parnas). Similarly, for
the Multinet Gateway project, the use of formal methods was mandated by contract, as it was required
to achieve appropriate levels of assurance for its security functionality. On the other hand, the use of
formal methods in SACEM and, perhaps to a lesser extent TCAS, was the result of interest on the part
of the participants.

—— |

Iuternational Survey of industrial Applications 17

Given the importance of the products being produced, with respect to safety- and security-critical
concerns, it is all the more important that the limits of formal methods, both in philosophic and in
technical terms, be appreciated by regulators, developers, and the general public (see Section 2.3).

§.4 Analysis

Below, we discuss each of the features, and we attempt to draw some general principles. Figure 3
summarizes our evaluations.

5.4.1 Client Satisfaction

In all four cases, we found that the clients (generally viewed as the regulatory agencies) were satisfied
with the formal methods efforts.

REGULATORY DNGS MGS SACEM TCAS
Client Satisfaction + + + +
Cost (of Product) n/a n/a n/a n/a
Impact + + + n/a
Quality 0 + + n/a
Time-to-Market n/a n/a n/a n/a
Cost (of Process) - n/a V] n/a
Impact 0 0 + +
Pedagogical + + + +
Tools n/a 0 + n/a
Design + + + +
Reuse n/a + + n/a
Maintenance n/a n/a n/a n/a
Requirements + + + +
V&V + + + n/a
DNGS = Darlington Nuclear Generating Station
MGS = Multinet Gateway System
SACEM = Railway Signalling System
TCAS = air Traffic Collision Avoidance System

+ = positive role

0 = neutral role

- = negative role
n/a = not available or not applicable

Fig. 3 — Evaluations of regulatory cluster cases

18 Craigen, Gerhant, and Ralston

Pivotal to client satisfaction were the perceived gains in assurance and comprehension, for example,
demonstration that code satisfied system requirements was fundamental to obtaining regulatory approval
for SACEM and DNGS. In the DNGS case, the demonstration was crucial for removing the shutdown
system as a “potential licensing impediment.” With respect to comprehension, it was through the use of
mathematical-based modelling that sharper understanding of system behavior was obtained. For example,
all involved with the Multinet Gataway System found that their understanding of the security aspects of
the MGS were improved.

Similar results are being achieved with the TCAS work. Our impressions are that the SC147°
committee finds the formal description of the Collision Avoidance System Logic and the surveillance
system to be substantially superior to the original pseudocode and English specifications. Reviewability
has been substantially enhanced.

5.4.2 Cost of Product

While we were unable to obtain sutficient information to draw strong conclusions about the costs of
the products being produced, a few observations are of interest.

It would appear that the level of effort directed at obtaining assurance and comprehension of the
systems is proportionately higher in this cluster of cases than with the others. Substantial effort was
particularly noticeable in the DNGS and SACEM cases. With DNGS, it was estimated that about $4
million was spent on the verification effort, it used up to 30 people at one point during the verification,
and (arguably, especially since DNGS is having ongoing problems) it may have delayed licensing by two
to three months. Each month’s delay cost Ontario Hydro $20 million in interest payments. The expense
of this effort is partly due to the immaturity of the technology that was being applied. In addition to
applying the technology to the shutdown system, it was also necessary to refine and augment the
technology. Tool support was effectively nonexistent and would have been, we believe, of substantial
benefit.

One of the primary motivations for the SACEM project was to increase throughput and thereby
eliminate the need for a third railway line (and the associated rolling stock, labor, etc.) costing hundreds
of millions of dollars. While increasing throughput, it was, however, necessary t0 maintain safety
margins. Some 310,000 hours were expended in developing the prototype and commercial systems.

With TCAS, the effort is one of capturing the requirements for an already deployed and, apparently,
troublesome system. The costs involved with this project are upgrade costs associated with developing
the formal description of the Collision Avoidance System Logic and the surveiilance system, and the
internal verification and validation effort.

5.4.3 Impact of Product

In general, we viewed the impact of the products as being positive for the organizations involved.
Perhaps the clearest case is SACEM. Not only has the Paris transportation authority increased the
throughput on one of its busiest lines, it avoided building a new line. In addition, GEC Alsthom was able
to deliver the product and is successfully using its new-found expertise to market itself further.

Note that TCAS is already under deployment in the U.S. and that the formal methods exercise has
yet to have any effect on the TCAS systems that are already flying; in effect, the case study is a reverse
engineering exercise on the requirements for TCAS.

3 An industry and government committee that is developing the TCAS requirements.

International Survey of Industrial Applications 19

5.4.4 Quality

From the developer’s perspective, formal methods helped to achieve quality goals in the MGS and
SACEM cases. With respect to MGS, the mathematical analyses and modelling that were performed
improved the understanding of the security principles. With SACEM, RER (the Paris regional rail
system) quality requirements were met, even though increased functionality requirements were imposed
(e.g., increased throughput). The DNGS is an interesting case study in that the use of formal methods
improved assurance, but the regulators did not claim an increase in quality. In effect, formal methods
were used a posteriori to model what existed and te demonstrate that the code met the requirements;
formal methods were not used as part of the development process.

It should be noted that formal methods were not, and cannot be, the only techniques used to provide
assurance. For exan.ple, SACEM used, among other techniques, graphical simulation, real-time
simulation, Failure Mode Effects Analysis, Hazard Analysis, and Fault Tree Analysis.

One underlying theme, however, was that nc one believed that testing alone could provide the
necessary assurance; the anecdotal evidence arising from testing regimes was viewed as being
insufficient.*

With respect to TCAS, while we cannot argue that TCAS itself has yet been improved, the quality
of the review process has certainly been improved by replacing a large, difficult to understand, English
language specificaiion with a more precise and concise formal description that was readable by the TCAS
SC147 Committee.

5.4.5 Time-to-Market

Time-to-market does not seem to have been a primary concern for the projects; though, especially
noticeable with the DNGS projert, delays can have a financial impact.

The possible effects of failing to complete product development or to achieve licensing can be
extensive. For DNGS, Ontario Hydro would have had to revert to a hardware solution at a cost of about
$1 million and a one-year wait for parts. For SACEM, a new railway line (costing hundreds of millions
of dollars) would have been required.

5.4.6 Cost of Process

We did not obtain enough information from which to develop general conclusions about process cost.
We observed, however, that substantial efforts were directed at attaining assurance and comprehension.
The amount of effort appears to be substantially more than found in our other case clusters. The effort
reported in the DNGS (four million dollars) and SACEM (approximately 120,000 hours) cases is
substantially more than one would expect in future such projects. Both cases were using new and evolving
technology; hence, efforts were needed to develop not only the product but also the technology being
used.

4 Butler and Finelli’s paper “The Infeasibility of Experimental Quantification of Life-Critical Software
Reliability” in the Proceedings of the ACM SIGSOFT’'91 Conference on Software for Critical Systems discusses
some of the limits of testing.

20 Craigen, Gerhart, and Ralston

5.4.7 Impact of Process

The regulatory cluster of cases resulted in a split neutral/positive rating for impact of process. In the
SACEM and TCAS cases, there are statements of intent to continue using formal methods in future
projects. In fact, the developers of SACEM have already applied their techniques to two subsequent
systems, Calcutta and KVS (see Volume 2 for description), and they intend to market their skills in
developing other railway-based systems. They also intend to market a toolset. The neutral ratings for
DNGS and MGS result from two different observations. For DNGS, it has been realized that for future
developments of computer controlled safety-critical processes, formal methods must play an important
role. On the other hand, the experiences that arose from DNGS have lessened the enthusiasm of some
managers to shift from hardware controllers to software controllers. (This is one of the negative
influences of using a technology that was immature and the consequent increase in cost.) For MGS, the
impact is reduced by the contract-driven nature of the organization; novelty is not always viewed
positively in responding to proposal requests. There was no clear continuation of formal methods projects
at Loral and, in fact, an explicit decision (not related to formal methods) was made not to proceed with
an attempt to acquire a high security level for the MGS.

5.4.8 Pedagogical

All organizations benefitted, educationally, from the projects. Better understanding of formal methods
techniques, research and development issues, and the products were achieved. Also of importance was
an increased understanding (especially in the DNGS and MGS cases) in the kinds of process necessary
for regulatory requirements. Note that with the DNGS and TCAS there has been substantial feedback
from the applications to the research programs of David Parnas [Par90] and Nancy Leveson [Lev9l],
respectively.

5.4.9 Tools

No general conclusions can be drawn from the use of tools in our regulatory cluster of cases. There
appears to be some need for automated deduction support, especially for demonstrating consistency of
code with specification. We note that there is an apparent dichotomy in that the MGS and SACEM
projects made substantial use of tools, whereas, from a formal methods perspective, DNGS and TCAS
used nothing. This dichotomy is, however, more in appearance than real since in both the DNGS and
TCAS cases the lack of tools is due directly to the immaturity of the technologies being used.> Tool
support was recognized as being needed in both cases; no philosophical positions against the use of tools
were taken.

5.4.10 Design

Formal methods appear to have uniformly improved either the product or the understanding (and
consequent assurance) of how the product works (in contrast to what was expected from conventional
development methodologies). These improvements appear to be the result of

1. the mathematical analyses of domain theories (e.g., in MGS, exploration of security models),

2. mathematical arguments demonstrating properties of code and specifications (e.g., the code
proofs, using B, of SACEM), and

3. the use of mathematical-based notations to describe requirements (e.g., TCAS) and specifications
(e.g., DNGS).

5 In TCAS, the commercially available STATEMATE did not meet the project needs, and a variant was
developed.

“

International Survey of Industrial Applications 21

5.4.11 Reusable Components

For the two cases where we could derive a conclusion, formal methods played a positive role in
reuse. The security and safety models that were developed as part of the Multinet Gateway and SACEM
projects, respectively, can be used in the development of similar systems. Note that we are claiming reuse
with respect to “models” or “mathematical theories,” not with respect to code. While we expect formal
methods to be beneficial in the development of reusable code (because of the use of formal specifications
to unambiguously describe the functionality of the code and the use of mathematics to develop sufficiently
general code that is more likely to be appropriate for reuse), such benefits were not forthcoming in the
four cases we studied here.

5.4.12 Maintenance

No general conclusions can be drawn from our regulatory cluster with respect to maintenance. We
expect that formal methods will be beneficial for maintaining systems as long as they are a part of a well-
defined and documented process. The use of formal notations to capture specifications and requirements
(and properly using information hiding and modularization techniques) should increase comprehension
and clarify interactions between parts of systems, thereby making maintenance simpler. However, if the
benefits are to be ongoing, maintenance and product improvements must build upon and continue to use
the practices that have been put in place.

5.4.13 Requirements

In all the regulatory cases, we were told that formal methods improved intellectual control, clarified
requirements, and removed superfluous requirements. For example, the SC147 committee believes that
the University of California at Irvine Statecharts-like notation has been beneficial, in that they are now
arguing over the technical substance of the formal descriptions of the CAS Logic and surveillance system;
they are not arguing over minor grammatical matters of a large English specification. Requirements have
been clarified in the MGS case through a sharper understanding of the security principles at play in a
heterogeneous network.

5.4.14 Verification and Validation

The use of formal methods was crucial to achieving assurance in the critical systems. Proofs that code
was in agreement with specifications were of fundamental importance in the DNGS and SACEM cases.
There was also some use of formal descriptions to generate test cases and the formalisms were used to
complement other Verification and Validation procedures. The authors are strongly of the opinion that
a spectrum of Verification and Validation technologies (e.g., formal methods, testing) must be used to
attain adequate levels of assurance.

6. COMMERCIAL CLUSTER
6.1 Introduction

The cases examined all concern the use of a formal method to develop products that are sold (or, in
the case of SSADM, were intended to be used) in the commercial marketplace. The companies
performing the design and development of these products are primarily commercial companies (although
each company has performed government